Cambridge International Examinations

Cambridge Ordinary Level

PHYSICS

5054/21
Paper 2 Theory
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	21

Section A

1 (a) velocity/it has a direction/is a vector
(b) (i) ($F=$)ma or 800×1.5 C1
1200 N A1
(ii) friction/air resistance acts on car B1
opposes force due to engine B1
(iii) ($\Delta v=$)at or 1.5×4.0 or 6.0 C1$31 \mathrm{~m} / \mathrm{s}$A1
2 (a) 260 N B1
(b) (i) for a body in equilibrium B1
(total) clockwise moment = (total) anticlockwise moment B1
(ii) $F_{1} d_{1}=F_{2} d_{2}$ or 260×0.35 or 91 or $F \times 0.65$ C1
$260 \times 0.35=F \times 0.65$ or $260 \times 0.35 / 0.65$ or $91=F \times 0.65$ or $91 / 0.65$ C1

140 N A1

3 (a) chemical (potential energy)B1
(b) (i) non-renewable and oil/it is not replaced/will run out B1
(ii) acid rain or produces CO_{2} or warms lakes/rivers/sea or global warming or greenhouse effect B1
(c) (i) useful energy output/(total) energy input or power for energy twice B1
(ii) $11.9 \times 10^{9} / 0.38$ or $1.9 \times 10^{9} \times 100 / 38$ C1
$5.0 \times 10^{9} \mathrm{~W}$ A1
$2(E=)$ Pt or $0.62 \times 5.0 \times 10^{9} \times 2.0(\times 3600)$ or $(5.0-1.9) \times 10^{9}$ etc. C1
$2.2 \times 10^{13} \mathrm{~J}$A1
[8]
4 (a) smallest angle for total internal reflection or angle for refraction along surface B1
angle of incidence in (optically) denser medium B1
(b) vertical ray continues undeviated B1
second ray (60° to horizontal) refracts away from normal into the air B1 third ray reflects internally and $i=r$ by eye not if any refracted ray B1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	21

5 (a) number of oscillations/vibrations/wavelengths/compressions/

(b) (i) $\quad(\lambda=) c / f$ or $330 / 2200$ C1
0.15 m A1
(ii) 1 no change
and

2 increases B1
(c) (i) 1 loudspeaker vibrates/oscillates/moves to and fro (and collides with molecules) B1
2 compressions and rarefactions/molecules vibrate/longitudinal wave B1
vibration/oscillation/energy passed on B1
(ii) fewer/no molecules/particles and less/no energy/vibration transferred B1
6 (a) (i) X N -pole B1
Y S-pole and Z N-pole B1
(ii) they touch/move towards each other and opposite poles attract B1
(b) any sensible use: starting-motor circuit; with a logic gate; nuclear power station B1$\begin{array}{ll}\text { corresponding explanation: current too large for dash-board switch; } \\ \text { current too small to power device; too dangerous to reach switch } & \text { B1 }\end{array}$B1
7 (a) (i) supplies the (mains) e.m.f./voltage B1
(ii) to complete the circuit/is at 0 V B1
(b) (i) the circuit/supply is cut/broken or current stops B1
fuse melts/blows/burns B1
(ii) live wire B1when it cuts the circuit/melts no part of the appliance is live/no shockB1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	21

Section B

8 (a) (i) 11 protons and 11 electrons B1
13 neutrons B1
electrons in orbit/surrounding nucleus or neutrons and protons in nucleus B1
(ii) one more neutron (in sodium-24) or one fewer neutron in sodium-23 B1
(b) (i) electron B1

(ii) ${ }_{-1}^{0}(\beta)$ cao

(ii) ${ }_{-1}^{0}(\beta)$ cao

(ii) ${ }_{-1}^{0}(\beta)$ cao B1 B1 B1

${ }^{24}(\mathrm{Mg})$

${ }^{24}(\mathrm{Mg})$

${ }^{24}(\mathrm{Mg})$ B1 B1 B1
${ }_{12}(\mathrm{Mg})$
${ }_{12}(\mathrm{Mg})$
${ }_{12}(\mathrm{Mg})$ B1 B1 B1 B1 B1 B1
(c) electromagnetic (radiation/rays/waves) M1
(very) high frequency/ energy or (very) short wavelength A1
(d) (i) path curving upwards B1
(ii) path continues in straight line B1
(iii) beta-particle charged or gamma-ray uncharged B1
(e) long enough or short enough B1 to take measurements so the body is not irradiated for long B1
[4]
9 (a) (i) magnetic field mentioned B1
alternating/changing magnetic field B1
current/voltage/e.m.f. induced (in secondary coil) B1

(ii)

 B1
diode B1
(b) (i) work done/energy transferred per unit charge M1
electrical energy to other forms or for whole circuit or property of supply A1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - October/November 2016	5054	21

(ii) 1.3 V B1
$2(I=)$ VIR or 1.3/5.2 C1
0.25 A A1

3 ($Q=)$ It or $0.25 \times 1.5 \times 3600$ or $0.25 \times 1.5 \quad$ C1
$0.25 \times 1.5 \times 3600$ or $0.37 / 0.375 / 0.38 \quad \mathrm{C} 1$
$1300 / 1350 / 1400 \mathrm{C}$ A1
$\begin{array}{lr}\text { (c) plastic/casing is an (electrical) insulator } & \text { M1 } \\ \text { no shock possible } & \text { A1 }\end{array}$

10 (a) (i) molecules/they close together or small gaps between molecules B1
(ii) molecules/they exert large (repulsive) forces

B1
(b) (i) $\quad(V=) \mathrm{m} / \rho$ or $680 / 0.85$

C1
$800 \mathrm{~cm}^{3}$ or $8.0 \times 10^{-4} \mathrm{~m}^{3}$
A1
(ii) 1 molecules vibrate \quad molecules vibrate \quad B1 collide with neighbours
or collide with electrons
B1 transfer vibration/energy electrons travel through metal B1
2 heated/hot oil expands/less dense B1
rises B1
convection current/circulation established B1
3 any suitable named insulator and it is a poor conductor
B1
(c) (i) temperature at which (liquid) vaporises/becomes gas/steam B1
(ii) $(Q=) m c \Delta T$ or $680 \times 2.0 \times(260-20)$ or $680 \times 2.0 \times 240 \quad$ C1
$3.3 \times 10^{5} \mathrm{~J} \quad \mathrm{~A} 1$
(iii) heat supplied to pan or heat lost to air/surroundings B1

